Homological Algebra Seminar Week 5

Alexandre Pons after the talk of Haotian Lyu & Runchi Tan

2 Derived functors

Throughout this whole chapter, \mathcal{A} and \mathcal{B} will denote two arbitrary abelian categories.

2.1 δ -functors

Definition 2.1. A homological (resp. cohomological) δ -functor between \mathcal{A} and \mathcal{B} is a collection of additive functors $\{T_n : \mathcal{A} \to \mathcal{B}\}_{n \geq 0}$ (resp. $\{T^n : \mathcal{A} \to \mathcal{B}\}_{n \geq 0}$) together with a collection of morphisms $\{\delta_n : T_n(C) \to T_{n-1}(A)\}$ (resp. $\{\delta^n : T^n(C) \to T^{n+1}(A)\}$) defined for every short exact sequence $0 \to A \to B \to C \to 0$ in \mathcal{A} , such that the two following conditions hold:

1. For any short exact sequence $0 \to A \to B \to C \to 0$ in \mathcal{A} , we have a long exact sequence

$$\cdots \to T_{n+1}(C) \stackrel{\delta_{n+1}}{\to} T_n(A) \to T_n(B) \to T_n(C) \stackrel{\delta_n}{\to} T_{n-1}(A) \to \cdots$$

(resp.
$$\cdots \to T^{n-1}(C) \xrightarrow{\delta^{n-1}} T^n(A) \to T^n(B) \to T^n(C) \xrightarrow{\delta^n} T^{n+1}(A) \to \cdots$$
)

2. For every morphism of short exact sequences

we have a commutative diagram for every $n \in \mathbb{Z}$:

$$T_n(C') \xrightarrow{\delta_n} T_{n-1}(A')$$
 resp. $T^n(C') \xrightarrow{\delta^n} T^{n+1}(A')$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$T_n(C) \xrightarrow{\delta_n} T_{n-1}(A) \qquad \qquad T^n(C) \xrightarrow{\delta^n} T^{n+1}(A)$$

Remark 2.2. We make the convention that T_n (resp. T^n) is 0 for any n < 0. In particular by Definition 2.1.1, T_0 is right-exact (resp. T^0 is left-exact).

- **Example 2.3.** 1. Homology gives a homological δ -functor $\operatorname{Ch}_{\geq 0}\mathcal{A} \to \mathcal{A}$, and cohomology gives a cohomological one $\operatorname{Ch}^{\geq 0}\mathcal{A} \to \mathcal{A}$.
 - 2. Let A be an abelian group, and $p \in \mathbb{Z}$. We define

$$T_0(A) := A/pA, T_1(A) := pA := \{a \in A | pa = 0\}, T_n = 0, \forall n \ge 2$$

and we want then to define δ_1 to get a homological δ -functor $\mathbf{Ab} \to \mathbf{Ab}$ (or a cohomological one by $T^0 := T_1, T^1 := T_0, \delta^0 := \delta_1$).

For this, let $0 \to A \to B \to C \to 0$ be a short exact sequence, and consider the following diagram:

By the snake lemma we have an exact sequence

$$0 \rightarrow {}_{p}A \rightarrow {}_{p}B \rightarrow {}_{p}C \xrightarrow{\delta} A/{}_{p}A \rightarrow B/{}_{p}B \rightarrow C/{}_{p}C \rightarrow 0$$

and this gives us $\delta_1 := \delta$.

3. We can generalize the previous example to the category of R-modules for some ring R. To do that, let $r \in R, M \in R$ -mod, and define

$$T_0(M) := M /_{rM}, T_1(M) := {_rM}$$

to get a homological δ -functor R-mod \rightarrow Ab.

4. In the same setting as in point 3., we can also define

$$T_n(M) := \operatorname{Tor}_n^R \left(R / (r), M \right), n \ge 0$$

and we will see later in the chapter why this is a homological δ -functor.

Definition 2.4. Let S_{\bullet}, T_{\bullet} be two homological δ -functors (resp. S^{\bullet}, T^{\bullet} two cohomological δ -functors). A morphism $S_{\bullet} \to T_{\bullet}$ (resp. $S^{\bullet} \to T^{\bullet}$) is a collection of natural transformations $\alpha_n : S_n \to T_n$ (resp. $\alpha^n : S^n \to T^n$) that commutes with δ , i.e. such that for any short exact sequence $0 \to A \to B \to C \to 0$, the following diagram commutes:

$$\cdots \to S_{n+1}(C) \xrightarrow{\delta_{n+1}^S} S_n(A) \to S_n(B) \to S_n(C) \xrightarrow{\delta_n^S} S_{n-1}(A) \to \cdots$$

$$(\alpha_{n+1})_C \downarrow \qquad (\alpha_n)_A \downarrow \qquad (\alpha_n)_B \downarrow \qquad (\alpha_n)_C \downarrow \qquad (\alpha_{n-1})_A \downarrow$$

$$\cdots \to T_{n+1}(C)_{\delta_{n+1}^{\overrightarrow{T}}} T_n(A) \to T_n(B) \to T_n(C) \xrightarrow{\delta_n^T} T_{n-1}(A) \to \cdots$$

resp.

$$\cdots \longrightarrow S^{n-1}(C) \xrightarrow{\delta_S^{n-1}} S^n(A) \longrightarrow S^n(B) \longrightarrow S^n(C) \xrightarrow{\delta_S^n} S^{n+1}(A) \longrightarrow \cdots$$

$$(\alpha^{n-1})_C \downarrow \qquad (\alpha^n)_A \downarrow \qquad (\alpha^n)_B \downarrow \qquad (\alpha^n)_C \downarrow \qquad (\alpha^{n+1})_A \downarrow$$

$$\cdots \longrightarrow T^{n-1}(C) \xrightarrow{\delta_T^{n+1}} T^n(A) \longrightarrow T^n(B) \longrightarrow T^n(C) \xrightarrow{\delta_T^n} T^{n+1}(A) \longrightarrow \cdots$$

Definition 2.5. A homological δ -functor T_{\bullet} (resp. cohomological δ -functor T^{\bullet}) is universal if for any other δ -functor S_{\bullet} and any natural transformation $f_0: S_0 \to T_0$ (resp. any S^{\bullet} and any $f^0: T^0 \to S^0$), there exists a unique morphism $\{f_n: S_n \to T_n\}$ extending f_0 (resp. there exists a unique morphism $\{f^n: T^n \to S^n\}$ extending f^0).

Example 2.6. We will see later that homology $H_*: \operatorname{Ch}_{\geq 0} \mathcal{A} \to \mathcal{A}$ and cohomology $H^*: \operatorname{Ch}^{\geq 0} \mathcal{A} \to \mathcal{A}$ are universal.

2.2 Projective resolutions

Definition 2.7. An object P in an abelian category A is *projective* if it satisfies the following universal property:

 $\forall B \xrightarrow{g} C$ epimorphism, $P \xrightarrow{\gamma} C, \exists P \xrightarrow{\beta} B$ such that the following diagram commutes:

$$B \xrightarrow{\exists \beta} P$$

$$\downarrow^{\gamma}$$

$$\downarrow^{\gamma}$$

In other words, the morphism $\operatorname{Hom}_{\mathcal{A}}(P,B) \to \operatorname{Hom}_{\mathcal{A}}(P,C)$ induced by g is surjective.

Example 2.8. Free *R*-modules are projective, as you can lift the image by γ of a basis of *P* by *q* to get β .

Proposition 2.9. An R-module is projective if and only if it's a direct summand of a free module.

Proof. " \Leftarrow " This is clear by the universal property of coproduct and the fact that free R-modules are projective.

" \Rightarrow " Let A be a projective module, and F(A) be the free R-module with basis $\{e_a\}_{a\in A}$. Note that F(A) is equipped with a projection $\pi: F(A) \to A$. Now, by the universal property of projective modules, we have a morphism $i: A \to F(A)$ such that $\pi i = id_A$, so that

$$0 \to A \xrightarrow{i} F(A) \to F(A)/A \to 0$$

is split, and that A is a direct summand of F(A).

- **Example 2.10.** 1. Let $R := R_1 \times R_2$ a product of two rings, and $P = R_1 \times 0$ an R-module. P is projective as it is a direct summand of R, but it is not free as $(0,1) \cdot P = 0$.
 - 2. Let F be a field, $R = M_n(F), n > 1$. $V := F^n$ is a projective R-module, as $R = V^{\oplus n}$, but V is not free; indeed, if it was, its dimension as a F-vector space would be dn^2 for some $d \ge 0$, but $\dim_F V = n \ne dn^2$.

Definition 2.11. We say that an abelian category \mathcal{A} has enough projectives if for every object A of \mathcal{A} , there is a projective module P and an epimorphism $P \to A$.

Remark 2.12. The category of finite abelian groups is an abelian category with no non-zero projective object.

Lemma 2.13. Let $M \in \mathcal{A}$. M is projective if and only if $Hom_{\mathcal{A}}(M, -)$ is exact.

Proof. Let $0 \to A \to B \to C \to 0$ be a short exact sequence in \mathcal{A} . We already know that $\operatorname{Hom}_{\mathcal{A}}(M,-)$ is left exact, so saying that it is exact is equivalent to saying that

$$\operatorname{Hom}_{\mathcal{A}}(M,B) \to \operatorname{Hom}_{\mathcal{A}}(M,C)$$

is surjective. But this is exactly the definition that we gave (Definition 2.7), so we are done. $\hfill\Box$

Definition 2.14. A *left resolution* of $M \in \mathcal{A}$ is a chain complex P_{\bullet} bounded below by 0, such that there is a map $P_0 \to M$ making the following sequence exact:

$$\cdots \rightarrow P_3 \rightarrow P_2 \rightarrow P_1 \rightarrow P_0 \rightarrow M \rightarrow 0$$

If every P_i is projective, then we say that P_{\bullet} is a projective resolution.

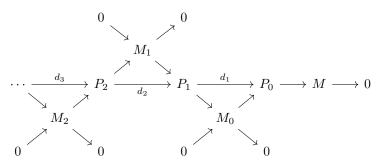
Lemma 2.15. Let A be an abelian category with enough projectives. Then every object M of A has a projective resolution.

Proof. We will construct P_i by induction. First, as \mathcal{A} has enough projectives, there is a projective module and an epimorphism $P_0 \twoheadrightarrow M \to 0$. We moreover define $M_0 := \ker(P_0 \twoheadrightarrow M)$.

Inductively, having defined $P_k, M_k, \forall k \leq i-1$, we define P_i to be the projective module with an epimorphism $P_i \to M_{i-1} \to 0$, and M_i to be the kernel of this morphism, namely $M_i := \ker(P_i \to M_{i-1})$.

Writing d_i for the composite $P_i \rightarrow M_{i-1} \rightarrow P_{i-1}$, we have a commutative

diagram



where every $0 \to M_i \to P_i \to M_{i-1} \to 0$ is exact by definition of M_i and P_i . But this exactness precisely gives us that

$$d_i(P_i) = M_{i-1} = \ker(d_{i-1}),$$

which shows that P_{\bullet} is a left resolution of M.

Theorem 2.16 (Comparison Theorem). Let $f: M \to N$ be a map in \mathcal{A} . Moreover let $P_{\bullet} \to M$ be a projective resolution, and $Q_{\bullet} \to N$ any left resolution. Then there is a chain map $f_{\bullet}: P_{\bullet} \to Q_{\bullet}$ extending f, i.e. such that the following diagram commutes:

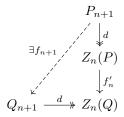
$$\begin{array}{cccc}
\cdots & \longrightarrow P_1 & \longrightarrow P_0 & \longrightarrow M & \longrightarrow 0 \\
\downarrow & & \downarrow & & \downarrow \\
f_1 \downarrow & & \downarrow & & \downarrow \\
\downarrow & & \downarrow & & \downarrow \\
\cdots & \longrightarrow Q_1 & \longrightarrow Q_0 & \longrightarrow N & \longrightarrow 0
\end{array}$$

This map is unique up to homotopy.

Proof. We do the proof by constructing f_n inductively, where $n \geq -1$. For the base case, we define $f_{-1} := f, P_{-1} := M, Q_{-1} := N$, and moreover we denote by d_0 the maps $P_0 \to P_{-1}$ and $Q_0 \to Q_{-1}$, so that when we talk about P_{\bullet} or Q_{\bullet} , we really mean the exact sequences extended by the term P_{-1} or Q_{-1} .

Now suppose we have constructed $f_k, \forall k \leq n$. By the equality $f_{n-1}d = df_n$, we have an induced map $f'_n: Z_n(P) \to Z_n(Q)$.

But $Z_n(P) = B_n(P)$ by exactness of P_{\bullet} , so $d: P_{n+1} \to P_n$ factorizes by $d: P_{n+1} \to Z_n(P)$ (and similarly for Q). We therefore have, by projectivity of P_{n+1} , the existence of a map f_{n+1} such that the following diagram commutes:



Moreover, $df_{n+1} = f'_n d = f_n d$ so this indeed is a chain map.

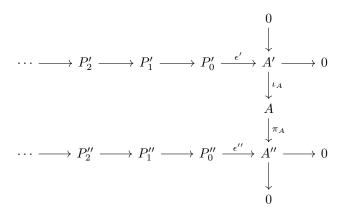
To see uniqueness up to homotopy, we let g_{\bullet} be another candidate to extend f. We want to construct $\{s_n: P_n \to Q_{n+1}\}_{n \geq -1}$ such that h:=f-g=sd+ds. First define $s_{-1}=0$. Note that $d_0h_0=h_{-1}d_0=(f-f)d_0=0$, so that h_0 factors by $h_0: P_0 \to Z_0(Q)=B_0(Q)$. By projectivity of P_0 , h_0 lifts to a map $s_0: P_0 \to Q_1$ such that $h_0=ds_0=s_{-1}d+ds_0$, and we have the base case.

Assume now by induction that we are given maps $s_i, \forall i < n$ such that $ds_i = h_i - s_{i-1}d$. In particular, the map $h_n - s_{n-1}d : P_n \to Q_n$ satisfies

$$d(h_n - s_{n-1}d) = dh_n - (h_{n-1} - ds_{n-2})d = dh - hd + sdd = 0$$

and this maps factors through $Z_n(Q)$. As before, that means it lifts to a map $s_n: P_n \to Q_{n+1}$ with $ds_n = h_n - s_{n-1}d$, and we have our homotopy by induction. \square

Lemma 2.17 (Horseshoe lemma). Given a commutative diagram



where the column is exact and the rows are projective resolutions, and defining $P_n := P'_n \oplus P''_n$, we have that P_{\bullet} is a projective resolution of A, and that the right hand column of the diagram lifts to an exact sequence of chain complexes

$$0 \to P' \stackrel{\iota}{\to} P \stackrel{\pi}{\to} P'' \to 0$$

where $\iota_n: P'_n \to P_n, \pi_n: P_n \to P''_n$ are the natural inclusion and projection.

Proof. See exercise sheet 5.