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2 Derived functors

Throughout this whole chapter, A and B will denote two arbitrary abelian
categories.

2.1 δ-functors

Definition 2.1. A homological (resp. cohomological) δ-functor between A and
B is a collection of additive functors {Tn : A → B}n≥0 (resp. {Tn : A → B}n≥0)
together with a collection of morphisms {δn : Tn(C) → Tn−1(A)} (resp. {δn :
Tn(C) → Tn+1(A)}) defined for every short exact sequence 0 → A → B →
C → 0 in A, such that the two following conditions hold:

1. For any short exact sequence 0 → A → B → C → 0 in A, we have a long
exact sequence

· · · Tn+1(C) Tn(A) Tn(B) Tn(C) Tn−1(A) · · ·

(resp. · · · Tn−1(C) Tn(A) Tn(B) Tn(C) Tn+1(A) · · · )

δn+1 δn

δn−1 δn

2. For every morphism of short exact sequences

0 A′ B′ C ′ 0

0 A B C 0

we have a commutative diagram for every n ∈ Z:

Tn(C
′) Tn−1(A

′) resp. Tn(C ′) Tn+1(A′)

Tn(C) Tn−1(A) Tn(C) Tn+1(A)

δn δn

δn

δn

Remark 2.2. We make the convention that Tn (resp. Tn) is 0 for any n < 0.
In particular by Definition 2.1.1, T0 is right-exact (resp. T 0 is left-exact).
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Example 2.3. 1. Homology gives a homological δ-functor Ch≥0A → A, and

cohomology gives a cohomological one Ch≥0A → A.

2. Let A be an abelian group, and p ∈ Z. We define

T0(A) := A
/
pA, T1(A) := pA := {a ∈ A|pa = 0}, Tn = 0,∀n ≥ 2

and we want then to define δ1 to get a homological δ-functor Ab → Ab
(or a cohomological one by T 0 := T1, T

1 := T0, δ
0 := δ1).

For this, let 0 → A → B → C → 0 be a short exact sequence, and consider
the following diagram:

0 A B C 0

0 A B C 0

·p ·p ·p

By the snake lemma we have an exact sequence

0 pA pB pC A
/
pA B

/
pB C

/
pC 0δ

and this gives us δ1 := δ.

3. We can generalize the previous example to the category of R-modules for
some ring R. To do that, let r ∈ R,M ∈ R-mod, and define

T0(M) := M /rM , T1(M) := rM

to get a homological δ-functor R-mod → Ab.

4. In the same setting as in point 3., we can also define

Tn(M) := TorRn

(
R
/
(r) ,M

)
, n ≥ 0

and we will see later in the chapter why this is a homological δ-functor.

Definition 2.4. Let S•, T• be two homological δ-functors (resp. S•, T • two
cohomological δ-functors). A morphism S• → T• (resp. S• → T •) is a collection
of natural transformations αn : Sn → Tn (resp. αn : Sn → Tn) that commutes
with δ, i.e. such that for any short exact sequence 0 → A → B → C → 0, the
following diagram commutes:

· · · Sn+1(C) Sn(A) Sn(B) Sn(C) Sn−1(A) · · ·

· · · Tn+1(C) Tn(A) Tn(B) Tn(C) Tn−1(A) · · ·

δSn+1

(αn+1)C (αn)A (αn)B

δSn

(αn)C (αn−1)A

δTn+1 δTn
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resp.

· · · Sn−1(C) Sn(A) Sn(B) Sn(C) Sn+1(A) · · ·

· · · Tn−1(C) Tn(A) Tn(B) Tn(C) Tn+1(A) · · ·

δn−1
S

(αn−1)C (αn)A (αn)B

δnS

(αn)C (αn+1)A

δn+1
T

δnT

Definition 2.5. A homological δ-functor T• (resp. cohomological δ-functor
T •) is universal if for any other δ-functor S• and any natural transformation
f0 : S0 → T0 (resp. any S• and any f0 : T 0 → S0), there exists a unique
morphism {fn : Sn → Tn} extending f0 (resp. there exists a unique morphism
{fn : Tn → Sn} extending f0).

Example 2.6. We will see later that homology H∗ : Ch≥0A → A and coho-

mology H∗ : Ch≥0A → A are universal.

2.2 Projective resolutions

Definition 2.7. An object P in an abelian category A is projective if it satisfies
the following universal property:

∀B
g
↠ C epimorphism, P

γ→ C,∃P β→ B such that the following diagram
commutes:

P

B C

∃β
γ

g

In other words, the morphism HomA(P,B) → HomA(P,C) induced by g is
surjective.

Example 2.8. Free R-modules are projective, as you can lift the image by γ
of a basis of P by g to get β.

Proposition 2.9. An R-module is projective if and only if it’s a direct summand
of a free module.

Proof. ”⇐” This is clear by the universal property of coproduct and the fact
that free R-modules are projective.

”⇒” Let A be a projective module, and F (A) be the free R-module with basis
{ea}a∈A. Note that F (A) is equipped with a projection π : F (A) → A.
Now, by the universal property of projective modules, we have a morphism
i : A → F (A) such that πi = idA, so that

0 → A
i→ F (A) → F (A) /A → 0

is split, and that A is a direct summand of F (A).
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Example 2.10. 1. Let R := R1×R2 a product of two rings, and P = R1×0
an R-module. P is projective as it is a direct summand of R, but it is not
free as (0, 1) · P = 0.

2. Let F be a field, R = Mn(F ), n > 1. V := Fn is a projective R-module, as
R = V ⊕n, but V is not free; indeed, if it was, its dimension as a F -vector
space would be dn2 for some d ≥ 0, but dimF V = n ̸= dn2.

Definition 2.11. We say that an abelian category A has enough projectives if
for every object A of A, there is a projective module P and an epimorphism
P ↠ A.

Remark 2.12. The category of finite abelian groups is an abelian category
with no non-zero projective object.

Lemma 2.13. Let M ∈ A. M is projective if and only if HomA(M,−) is exact.

Proof. Let 0 → A → B → C → 0 be a short exact sequence in A.
We already know that HomA(M,−) is left exact, so saying that it is exact is
equivalent to saying that

HomA(M,B) → HomA(M,C)

is surjective. But this is exactly the definition that we gave (Definition 2.7), so
we are done.

Definition 2.14. A left resolution of M ∈ A is a chain complex P• bounded
below by 0, such that there is a map P0 → M making the following sequence
exact:

· · · → P3 → P2 → P1 → P0 → M → 0

If every Pi is projective, then we say that P• is a projective resolution.

Lemma 2.15. Let A be an abelian category with enough projectives. Then
every object M of A has a projective resolution.

Proof. We will construct Pi by induction. First, as A has enough projectives,
there is a projective module and an epimorphism P0 ↠ M → 0. We moreover
define M0 := ker(P0 ↠ M).

Inductively, having defined Pk,Mk,∀k ≤ i− 1, we define Pi to be the projective
module with an epimorphism Pi ↠ Mi−1 → 0, and Mi to be the kernel of this
morphism, namely Mi := ker(Pi ↠ Mi−1).
Writing di for the composite Pi → Mi−1 → Pi−1, we have a commutative

4



diagram

0 0

M1

· · · P2 P1 P0 M 0

M2 M0

0 0 0 0

d3

d2

d1

where every 0 → Mi → Pi → Mi−1 → 0 is exact by definition of Mi and Pi.
But this exactness precisely gives us that

di(Pi) = Mi−1 = ker(di−1),

which shows that P• is a left resolution of M .

Theorem 2.16 (Comparison Theorem). Let f : M → N be a map in A. More-
over let P• → M be a projective resolution, and Q• → N any left resolution.
Then there is a chain map f• : P• → Q• extending f , i.e. such that the following
diagram commutes:

· · · P1 P0 M 0

· · · Q1 Q0 N 0

f1 f0 f

This map is unique up to homotopy.

Proof. We do the proof by constructing fn inductively, where n ≥ −1.
For the base case, we define f−1 := f, P−1 := M,Q−1 := N , and moreover we
denote by d0 the maps P0 → P−1 and Q0 → Q−1, so that when we talk about
P• or Q•, we really mean the exact sequences extended by the term P−1 or Q−1.

Now suppose we have constructed fk,∀k ≤ n. By the equality fn−1d = dfn, we
have an induced map f ′

n : Zn(P ) → Zn(Q).
But Zn(P ) = Bn(P ) by exactness of P•, so d : Pn+1 ↠ Pn factorizes by
d : Pn+1 → Zn(P ) (and similarly for Q). We therefore have, by projectivity of
Pn+1, the existence of a map fn+1 such that the following diagram commutes:

Pn+1

Zn(P )

Qn+1 Zn(Q)

d

∃fn+1

f ′
n

d
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Moreover, dfn+1 = f ′
nd = fnd so this indeed is a chain map.

To see uniqueness up to homotopy, we let g• be another candidate to extend f .
We want to construct {sn : Pn → Qn+1}n≥−1 such that h := f − g = sd+ ds.
First define s−1 = 0. Note that d0h0 = h−1d0 = (f − f)d0 = 0, so that h0

factors by h0 : P0 → Z0(Q) = B0(Q). By projectivity of P0, h0 lifts to a map
s0 : P0 → Q1 such that h0 = ds0 = s−1d+ ds0, and we have the base case.

Assume now by induction that we are given maps si,∀i < n such that dsi =
hi − si−1d. In particular, the map hn − sn−1d : Pn → Qn satisfies

d(hn − sn−1d) = dhn − (hn−1 − dsn−2)d = dh− hd+ sdd = 0

and this maps factors through Zn(Q). As before, that means it lifts to a map sn :
Pn → Qn+1 with dsn = hn−sn−1d, and we have our homotopy by induction.

Lemma 2.17 (Horseshoe lemma). Given a commutative diagram

0

· · · P ′
2 P ′

1 P ′
0 A′ 0

A

· · · P ′′
2 P ′′

1 P ′′
0 A′′ 0

0

ϵ′

ιA

πA

ϵ′′

where the column is exact and the rows are projective resolutions, and defining
Pn := P ′

n ⊕ P ′′
n , we have that P• is a projective resolution of A, and that the

right hand column of the diagram lifts to an exact sequence of chain complexes

0 → P ′ ι→ P
π→ P ′′ → 0

where ιn : P ′
n → Pn, πn : Pn → P ′′

n are the natural inclusion and projection.

Proof. See exercise sheet 5.
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